If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-35x-750=0
a = 2; b = -35; c = -750;
Δ = b2-4ac
Δ = -352-4·2·(-750)
Δ = 7225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7225}=85$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-35)-85}{2*2}=\frac{-50}{4} =-12+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-35)+85}{2*2}=\frac{120}{4} =30 $
| x^2-35x+750=0 | | 47=7(x-5) | | 16x=-x^2-63 | | 7.5c-2.5+8=-7 | | 3x6=24 | | x/6=x/5-3 | | 4(3x-1)=2(6x+4) | | 40/100=x/55 | | (x-7)*3=273 | | x÷3=-2 | | x÷3=-2 | | 2(x)=-7 | | 2(x)=-7 | | 5x+14-3x=x+21 | | -3=3x-10 | | x÷4=0 | | x-7=-12 | | 1/3(x-4)=8 | | 2x+4=x+18 | | 3(2x-5)=21 | | -(x+3)=8/10-10x | | 25x=20x+5 | | 20=-2.71x^2+40x+6.5 | | 3x+13=13=-75-8x | | 16x^2-112x=0 | | 3x+5x+8=20 | | x^2-10∙x+21=0 | | 15x+5+10x+35=180 | | (2X+7÷3)-(3x+5÷7)+20=30-3x÷5 | | (2X+7÷3)-(3x+5÷7)+20=30-3x-5 | | 10x+7x+33=180 | | 3x-2/2x-3=4 |